
Engineering
productivity
goes beyond
“just code”

Alberto Silveira

2

Measuring the productivity of software engineering teams is a complex
undertaking. For a start, productivity can be a subjective term. Even
when benchmarks and metrics are set in place, how an engineer
perceives productivity will likely differ from what an executive or board
member sees. Everyone has different viewpoints, and each person’s
interpretation of productivity will pass through their particular lens.

Productivity in software development is no exception. There is
much more to it than simply the amount of code written and its
bug-free state.

Metrics such
as Deployment
Frequency, Cycle
Time, Pull Request
Throughput, Code
Activity, and Lead
Time help bring
some perspective,
but a lot more work
remains invisible.

3

This invisible work increases the communications gap between the
hidden, almost abstract world of coding on the one side and that of
marketers, purchasers, and investors on the other. It’s a gap that can
cause frustration and misunderstanding and can lead to employee
turnover and a slowdown of business growth. It is usually the
responsibility of engineering leaders to close this gap.
As I learned from my friend Peter Bell, founder and CTO of CTO
Connection, there are two classes of metrics: efficiency and
effectiveness. Efficiency ensures you are building things right.
Effectiveness means you are building the right things. Productivity
metrics fit under the efficiency umbrella, and most of the time, this
generates an obsession with measuring solely code-related activities.
Effectiveness relates more to business metrics and is usually aligned
with a fiscal quarter’s objectives, especially if you use the objectives
and key results (OKR) methodology.

So, how do high-performance teams do it?

This paper uses a simple restaurant metaphor to help readers understand
that when building software, every unit of work is valuable, and
every job is essential. It will explain why engineering productivity
metrics should be widened to tell a complete and more accurate story.
This understanding should help close the gap between engineering
teams and stakeholders, proving to all sides that productivity and true
value delivered goes beyond “just the code.” Delving deeper into the
restaurant analogy, I have chosen to illustrate these metrics using the
food delicacy carpaccio.

Using metaphors like this is not that unconventional. People who
analyze this industry will often use imagery that revolves around

https://www.linkedin.com/in/peterfbell/
https://www.ctoconnection.com/
https://www.ctoconnection.com/

4

Carpaccio served
= Productivity ratio

Carpaccio produced

“slicing the work” properly, especially when building software.

I have seen cupcake, birthday cake, and wedding cake metaphors
used in design thinking, and for building a successful Minimum Viable
Product (MVP), author Henrik Kniberg explains in detail how to build a
product into phases properly using a scooter, then a bicycle, then a
motorcycle, and then a car. So, in that sense, carpaccio fits right in as
a comfortable way for an audience to connect with the concept.

I like to refer to the “vertical slices,” where each slice must be “delightful.”
The whole idea is that you deliver value with each piece, whether it is a
food delicacy or software. But it is not just about carpaccio as food. It’s
also about the restaurant where it is served. It’s essential to make the
restaurant a profitable and sustainable business – that’s what every
investor wants. This means the restaurant should “create” customers
who are happy to pay for their meal and who will also return at a later
date. To achieve this, there has to be a lot more going on than just
actually seeing those dishes being served.

In this sense, I will use the action of preparing and serving carpaccio to
analogize the essential productivity ratio:

But before we get to this, we first need to stop and spend a little time
with DORA 4.

https://blog.devgenius.io/cake-experience-roadmap-design-thinking-explained-50e74ec5e1fc
https://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp

5

Accelerate
and DORA 4

6

The book Accelerate by Nicole Forsgren, Ph.D., Jez Humble, and
Gene Kim stands as a powerful and much-respected strategy for
DevOps. It uses research to present and explain the industry metrics
of maturity and productivity. Maturity in software development refers
to the reliability of delivery, while productivity illustrates the pace
of work. Code changes might be deployed frequently, as in hourly or
on longer timescales of days, weeks, or months. As such,
organizations can describe themselves in terms of maturity as low,
medium, high, and elite. According to Forsgren, Humble, and Kim, elite
maturity status belongs to organizations that deploy quality software
multiple times daily.

At LawnStarter, for example, we deploy to production about 10-12
times a day. At Schoology, where I worked previously as Head of
Engineering, the frequency was a little less, around three or four times
a day, but with an engineering team three times bigger. In some of my
older job experiences, we deployed anywhere between once every
three months or once every twelve, with even larger investments.
Achieving higher maturity levels is no longer the exclusive privilege
of high-profile companies like Google; almost any company can
achieve it, but it requires investments whose return is often tricky for
executives or investors to visualize. The work needed to improve the
effectiveness of engineering teams is not cheap and takes time to
pay off, but it is just as crucial as any shiny new features that go out
to end users.

Deployment frequency represents one-quarter of the DORA 4
collection of metrics, which together form a central component of the
Accelerate book. DORA stands for DevOps Research and Assessment

https://itrevolution.com/book/accelerate/
https://www.lawnstarter.com/

7

Deployment frequency
measures maturity, not

productivity

8

which was the name of the authors’ independent DevOps research
group, acquired by Google in 2018. The other three DORA 4 metrics
are: lead time for changes, mean time to recovery (MTTR), and change
failure rate. Altogether, Accelerate and the DORA 4 metrics have been
the preeminent driver of KPIs in the last few years.

We need a more human perspective
This deployment frequency approach places appropriately heavy
emphasis on the act of changing the code. But I must ask myself,
as a team leader, where’s the human perspective? Metrics speak to
people’s performance, but they’ve been greatly depersonalized. In
pursuing elite maturity status, we must ensure we are not just writing
code for the sake of it.

We need engineers who also understand the end user and
the business.

This observation about understanding the business must not be
overlooked or minimized. It’s a human-focused thing. It also applies
to collaboration, knowledge sharing, and team-building activities.
Successful organizations build products that customers love, which can
only happen when the right people are involved and treated correctly.
Teams cannot afford to hire people who merely hit the keyboard to
write code without any profound understanding of or connection to
the end user.

Understanding the business means understanding its processes and
goals and ensuring full team alignment with its North Star. Alignment
with the North Star further requires an improved understanding of
the different personas within the team and how they interact (this is
something I explore in more detail in my book).

https://crossingtheequator.com

9

Now, let’s
have some
carpaccio

10

Carpaccio is an Italian appetizer consisting of paper-thin sliced meat,
often served raw or rare. Part of its appeal comes from the thinness by
which it is sliced. The increased surface area from its thinness helps
maximize the taste sensation, making it a delicacy.

But carpaccio can also be used as a symbol of “value delivered” both
in restaurants and by analogy, in software development. I’ll admit, I
am a gourmand. I love to experience food, and I find great satisfaction
in being able to translate life experiences like food and sailing (my
other passion) into workplace learning experiences. I also love seeing
teams develop, grow, and thrive through better, more modern
techniques. Happily, carpaccio seems to fit the bill on all these
priorities. Here’s what I mean.

A primary connection that combines carpaccio with delivering
value in software is through this “user experience.”

When teams rush to provide software, it parallels the rushed preparation
of carpaccio, with the slices incorrectly cut, which will subsequently
lessen its tactile, olfactory, and flavor experience. Occasionally,
discerning dinner guests may return their plates to the kitchen if the
carpaccio slices don’t meet the standard. In software, we call this
unsatisfactory experience a defect or a bug. In both cases, in kitchens
and coding, additional activity and expense must be incurred to correct
the problem.

In the software development world, we find ourselves in an era of
accelerated change, shorter timelines, and newer, more aggressive
competitors. This means that any company that develops software
must balance its investments in building new features with the costs
of maintaining its existing products. Either way, much must happen

11

These can include:

High-
performance
teams must
invest time in
supporting other
vital activities,
which are vital
while not being
directly visible to
users or critical
stakeholders.

•	 planning activities
•	 writing technical and non-technical documentation
•	 investigating code to learn its original intent
•	 building developer tools to increase the effectiveness of teams
•	 improving observability, scaling, and security items
•	 performing platform upgrades
•	 refactoring to improve maintainability
•	 or even touching anything in production that doesn’t leverage

infra-as-code (IaC).

for teams to deliver value to users and to ensure a profitable,
successful business.

https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac

12

All the tasks that do not appear to directly result in new features and
do not have direct revenue associated with them make the job of
measuring the productivity of software teams more of a challenge.

For some organizations, this is still the way. Productivity metrics
remain focused on the amount of code delivered or measurements
around code activity. But these metrics tend to come up short. It is
highly impractical, for example, to measure productivity using metrics
such as the number of hours a person spends in their chair. Work just
doesn’t happen that way, and the face time approach, which assumes
a person is working hard just because they are visible, is inaccurate
and unfair to both sides. Of course, this issue is further compounded
by the growing trend of working from home.

Applications like Code Climate do an excellent job of measuring coding
activities, but at the end of the day, much more needs to happen to
understand something as subjective as producing value.

The concept of carpaccio and its role as a success factor in the
software business, or in running a restaurant, illustrates three key vital
components:

What’s valuable when delivering software is a combination of many
activities that go from having a great idea on one side to a happy
customer willing to pay for the product on the other. In between,
you have humans who need to work wisely together to build a
successful business.

1.
2.
3.

The work needed to create the product.

Delivery to the customer; and

The importance of having delighted customers who are willing to
pay for it.

https://codeclimate.com/

13

These can all be used to analogize more efficient DevOps.

Imagine a typical company that has assembled a small group of
people, one from product, a few from engineering, and one from
design. This small group of people represents software development’s
three disciplines, which I refer to in my book as an iron triangle. Now
imagine they are in the kitchen of a busy restaurant, world-famous for
its antipasto dishes, including carpaccio. It would be expected that
these three people will focus a great deal on the finished product.

The person from design will consider its final appearance – its
presentation laid out on the plate and served to the customer since
this will go a long way toward the customer’s enjoyment. The product
person will likely want to know if the restaurant is preparing the “right”
things and will also want to explore opportunities to increase the
number of carpaccio dishes sold without compromising quality. This
is vital to increase profits without minimizing the user experience. The
engineer will look at how best to prepare and deliver most efficiently.

So, it’s not too much of a stretch to see how well-defined processes
are necessary in a kitchen as well as in a software development
environment. Without it, people will be stepping on each other’s toes,
and customers and the business will suffer. In the case of carpaccio, if
there is no properly sharpened knife or slicer available, the product will
go out too thickly or will be inconsistently sliced. When that happens
in software development, that’s a bug, and this will increase the
Change Failure Rate (one of the DORA metrics) or, as I like to call it, the
Carpaccio Defect Rate.

But even that’s not good enough. The system must work better than

https://crossingtheequator.com

14

that to create value and maintain a sustainable business. In software
development, there was a time when it was acceptable for bugs to exist
when code was pushed into production and made available to users.
But now, consumers will likely abandon the product immediately and
permanently if that happens. Tolerance levels are much lower these
days. In a restaurant, a dissatisfied customer might never return, and
worse, they may leave negative reviews on social media, especially if
they are passionate about exceptional carpaccio.

The challenge of getting it all to the customer

But there is more to good food than simply the quality of the ingredients
and the preparation technique. A significant part of the success of a
popular restaurant comes from its physical delivery to the table. When
dining together in a restaurant, guests expect that everyone at the
table receives their meals from the wait staff at precisely the same

time, and every meal should
be at its ideal temperature.
No one likes being the only
person at a table whose
food hasn’t arrived. This
is an unstated element of
the dining experience, not
printed on any menu. It is
one of those supporting
yet not directly visible
components that support
the quality of the product. It
requires a delivery method
that is separate from the

15

“production of the food” process yet integral to it. It is the essence of
efficient restaurant management.

The main idea behind CI/CD is to push code out more frequently,
delivering value with smaller risks. But sometimes, that is not a trivial
activity, nor is it even possible if continuous investment is not added
to the agenda. Depending on the application’s architecture – monolith,
microservices, or serverless – and how teams are organized, multiple
teams may contribute to the same code base, leading to a release
coordination nightmare that prevents code from being released in the
cadence needed. From a restaurant perspective, this is like using a
single server to bring the food from the kitchen to the guests. The
waiting time will be longer than customers are willing to accept.

In an ideal world, each application can be released multiple times a day
whenever the code is ready for final users. In a restaurant, food should
be served whenever all dishes for a table are ready to be served. Even
in Accelerate, the authors talk about the need for teams to be self-
sufficient and empowered, which implies fast code delivery.

But code comes with dependencies. Applications intertwine,
meaning releasing one without breaking a connection elsewhere is
seldom possible. Engineering teams may try to create robust APIs,
sophisticated testing strategies, defensive coding, etc., all in an
attempt to make each software component as independent as
possible. In the ideal world, each team would own its software
from the bottom-up but in reality, there will always be dependence
and complexity involved. This means that sooner or later teams
have to coordinate to contribute to the same code base and manage
code releases.

16

The reality is that shipping code takes time, and the process has
limitations. At LawnStarter, it takes about 30 to 40 minutes to push our
main API to production. Every time Team A and Team B want to release
changes to the API, they may have their code shipped together. When
both changes go well, that’s great. A happy customer means a happy
business. But when one of them doesn’t go well, both code changes
must go back to the kitchen, even though only one was defective.
They are tied together, and that comes with a cost.

So, using the restaurant kitchen analogy again, it’s like a waiter telling
the kitchen what is needed for a table with two differently styled
carpaccio orders. For the chef, this means two carpaccio orders in
one shipment. That shipment will add another digit to the deployment
frequency metric. The ultimate value to the restaurant will be the
successful delivery of the two different carpaccio orders on time and
correctly. The problem is, when things go wrong with one plate, the
server then must bring all the plates back to the kitchen even though
only one of them wasn’t to the customer’s taste. That impacts the
overall deliverables, customer satisfaction, the restaurant’s profits for
the night, and possibly its reputation.

17

Slices of
carpaccio
in software
development

18

To understand the levels of care that go into software development,
I suggest product and engineering teams use the following approach
when slicing the work, each a subset of the one before:

In the carpaccio analogy, you can think of stories and bugs as the
most granular individual piece of carpaccio. A story is a new, sliced to
perfection piece of carpaccio that should be delightful to a customer.
A story should not be so big that preparing it would take much longer
than customers would be willing to wait for, or so big that customers
would not enjoy eating it. A story should also not be so small that
customers wouldn’t even notice that it has been served to them (like
a garnish), thus being unwilling to pay for it. In my teams, I like to set
a goal that stories can’t take more than five days from when the work
starts to when it is delivered to customers. If it needs more time, then
it needs to be sliced further.

A Bug happens when we deliver a piece of carpaccio that doesn’t
meet expectations and gets returned to the kitchen. As stated in the
previous section, sometimes, dinner guests may send their plates back
to the kitchen because the carpaccio slice didn’t meet the standards.
Additional activity and expense will be incurred in both cases to correct
the problem.

Rock Initiative
Stories
Bugs
Tasks

Epic

Correcting bugs is essential to any sustainable business, and fixes
should not be accounted for as new pieces of carpaccio, in just
the same way customer in a restaurant wouldn’t pay twice for an
unsatisfactory dish that was sent back to the kitchen and replaced.

19

Tasks are composed of all activities required to produce the
carpaccio. Tasks don’t represent the product being directly delivered
to customers but are essential for carpaccio preparation in the kitchen.
Tasks such as sharpening the knives and cleaning the cooking
stations are good examples of equally essential contributors to the
end result. As mentioned before, in software, these include valuable
activities such as planning, writing documentation, performing
investigation spikes, etc.

Epics are like serving plates full of carpaccio. When we combine
multiple plates, we have an initiative with enough carpaccio to serve
one or more full tables. Multiple initiatives would comprise the entire
Rock, representing enough carpaccio to serve everyone at the party.
A Rock would be when we have delivered enough initiatives towards a
goal enough to contribute revenue to grow the business.

In the real world of software development and now described in
the reverse order, a Rock is a measurable company objective that is
reviewed quarterly, and which can span across multiple quarters. It is a
high-level area of focus that can cross various teams and departments,
which ultimately helps tell the story of how they are building towards
the company vision. A Rock is composed of many Initiatives.

An Initiative is a time-bound body of work that advances toward
a defined goal for the company’s Rock. It produces quantifiable
business value and presents meaningful solutions to the user as a
project. Every Initiative must include a goal statement and answer the
following questions:

20

1.
2.
3.

What is the goal?

What problem are we solving, and why do it now?

How are we measuring success?

An Initiative is further composed of a group of Epics, Stories, Tasks,
and Subtasks. All work shipped must be part of an Initiative unless it is
extraneous to its quality, such as a long-standing bug.

An Epic is a milestone within the larger Initiative and represents a
cohesive set of Stories (sometimes it also includes bugs) that achieve
the stated goals. Epics must have a clear beginning and planned end.
In addition, Epics must have a defined purpose/scope representing a
milestone/release. An epic bridges individually shippable user stories
to the larger initiative by grouping a set of stories with similar use or
business value. Epics must represent vertical slices of work that deliver
end-to-end value.

Stories, Bugs, and Tasks are the small increments (five days or less) of
work that are needed to complete an Epic.

21

The
Carpaccio
productivity
ratio

22

I have been using deployment frequency and DORA 4 metrics as critical
guides for many years in my career. Still, I have struggled to demonstrate
productivity, mainly because of the “invisible work that happens in the
kitchen.” That’s why I eventually landed upon the productivity ratio
mentioned earlier as an ideal way of explaining productivity. Once
again, the formula reads like this:

ROI highly depends on the Productivity Ratio. For instance:

The optimal numbers, in my experience and using data from my
teams, are:

Carpaccio served
= Productivity ratio

Carpaccio produced

•	 When the Productivity ratio = 0%, a lot is happening in the kitchen,
but no carpaccio is being served. Therefore, the restaurant can’t be
sustainable.

•	 When the Productivity ratio = 100%, all the kitchen work directly
results in carpaccio being served to customers. This is a utopia and
impossible, in my opinion.

•	 Productivity Ratio < 70%: Teams need to focus more on delivering
carpaccio to guests.

•	 Productivity Ratio >= 70% and <= 85%: Good balance on keeping
the kitchen in shape while delivering carpaccio.

•	 Productivity Ratio > 85%: Opportunity to invest in activities that can
promote better knowledge sharing, stronger collaboration, user
experience improvements, process enhancements, etc. Anything
that could make the kitchen more efficient overall or activities to
help scale the business.

23

Factoring in a strategic debt

When planned correctly, the notion of debt might also factor in as a
positive and balanced contributor to the productivity ratio. On the one
hand, a decision to borrow from the future allows you to get something
achieved sooner, but on the other hand, when you take on too much
debt, you place a limit on your productivity because of the amount of
interest that has to be paid. In a restaurant scenario on a busy Saturday,
you might decide not to tie up staff with washing all the dishes, thus
freeing them up to ensure they can do their part in serving customers
promptly (increasing your productivity ratio). But if you don’t wash all
your dishes before the next busy day, you won’t be able to serve all
your customers (thus, a lower productivity ratio).

Now, back to ROI. Investors always want to see a profitable
restaurant. Suppose they invest $1 million to add more people, buy
new and better machinery, or introduce new technology. In that case,
they expect $1 million + x multiplier in y amount of time. In the restaurant,
if no carpaccio is served, no customers are paying, which means the
business is not sustainable. If the restaurant hits the 100% Productivity
Ratio, it can do great in the short term, but will not be sustainable.
Plates will be dirty, knives won’t be sharp, and people will be stepping
on each other due to under-optimized processes. An optimal and
realistic productivity ratio would be between 70% and 85%.

As already stated, investors want the customers to enjoy their dining
experience and then make reservations for a return visit. The more
their patronage recurs, the more it becomes predictable. In business
terms, stakeholders want every customer to represent healthy and
wealthy ARR (Annual Recurring Revenue). This is the essence of the

24

subscription model, used in online apps but which is not so obvious in
the management of high-end restaurants. It is, however, seen in the
loyalty card model used by large chains like Starbucks, for whom the
carpaccio model is equally applicable to their products, service, and
productivity ratio.

The following illustration is intended to represent known industry
metrics and how the new Carpaccio Served and Carpaccio Production
connect with them:

Carpaccio Lead Time:

The amount of time it takes from the moment the
customer places an order to the time the carpaccio
arrives at the table. Not represented in this picture. The
software industry calls this “Lead Time for Change.“

Carpaccio served:

All the carpaccio
that gets served to
customers. The result
is direct revenue to the
business.

Carpaccio Frequency:

The rate that carpaccios
are being served, whether
delivered individually or
grouped. The software
industry calls this
“Deployment Frequency.”

Carpaccio Production:

All the work required to
produce the carpaccio.
This includes sharpening
the knives, cleaning
plates, organizing the
kitchen as well as cutting
the carpaccio itself.

Carpaccio
Production Time:

The amount of time
it takes between the
carpaccio being cut and
prepared until it gets
served to a customer.
The software industry
calls this “Cycle Time.“

Defective Carpaccio
Rate = Defective
carpaccio / Carpaccio
Served. The software
industry calls this
“Change Failure Rate.”

25

Seeing the
challenge
from a
leadership
perspective

26

I tested out the carpaccio analogy on the ultimate audience – the
executive team at my current company. They already knew that relying
solely on looking at code metrics was inadequate. Those metrics were
not explaining the whole story.

Executive members had questions like, “why are we investing X
million dollars in adding more people to the engineering team
when the deployment frequency is not improving proportionally?”
I knew this was a fair question. Even though our teams were working
extremely hard, improvement was not visible. My executive peers had
the right to ask me to explain the ROI as we were scaling the team.
Going back to the carpaccio/restaurant kitchen analogy, my answer
was, “it is a fact that we added more people to the team, that we
are producing more and that we are having more units of work being
delivered. But this means the servers are being given more plates full
of meals, and that’s where the bottleneck happens. The kitchen is
busy, but there is only so much that servers can handle!”

This was an image that made sense to them. The executive members
showed signs that they were starting to get it. But they wanted to
know more about how to serve more carpaccio to the guests to
increase profits and also how to measure this. “OK, we’re making
great carpaccio,” they said, “but how do we know whether we are
spending too much on sharpening knives? How will we know if we
have more knives than we need? How do we find the right balance
between all the work that we put into producing carpaccio versus
serving it to customers? “

This is where I sought to distinguish the metrics in their minds:

27

•	 The primary metric, I said, was the total amount of carpaccio served,
the Carpaccio Served metric. That is the number that will bring the
profits to the restaurant.

•	 The counterbalance metric is all the work needed to produce the
carpaccio itself, the Carpaccio Production metric.

•	 The actual productivity metric needed to help understand the ROI
comes from the ratio of the amount served divided by the amount
produced, as I explained earlier.

•	 Carpaccio frequency remains a valid metric to measure maturity and
help teams understand the improvements that need to be made to
accelerate the process of getting carpaccio to the table. Still, it does
not necessarily tell the story of all the great work that employees
are doing in the restaurant.

•	 We risk having too much carpaccio, most of which will not make it
to customers’ plates.

•	 We risk working too much on internal kitchen activities that wouldn’t
necessarily produce enough carpaccio to be served.

•	 We risk not being able to serve the carpaccio as and when it becomes
available to be served.

Without understanding the productivity formula, the risks appear:

When teams work on a one-to-one relationship, producing individual
carpaccio servings on demand, that’s also a problem because then
teams will not be able to get to the most effective way of working
in a kitchen. The bottom line is that scaling is not an easy task but is
required for any company that wants to see its revenue grow.

Every CTO or engineering leader deals with the same challenge:
“how much value are we getting from product engineering?”. This is

28

especially so, given that it is always the most expensive department
in any SaaS company. For this, the metrics that matter show value
across everything done in the department.

Conclusion

The industry needs a better way to measure software engineering
productivity, since current industry metrics don’t tell a true story. It
is my hope that the Productivity Ratio metric, as presented in this
paper, will help Engineering leaders close the gap in communicating a
team’s performance, allowing those teams to focus on activities that
will move the business forward.

29

Alberto Silveira

https://www.linkedin.com/in/asilveira
https://crossingtheequator.com

